MakeItFrom.com
Menu (ESC)

S44535 Stainless Steel vs. EN 1.4567 Stainless Steel

Both S44535 stainless steel and EN 1.4567 stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S44535 stainless steel and the bottom bar is EN 1.4567 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
190 to 240
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
22 to 51
Fatigue Strength, MPa 210
190 to 260
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 78
76
Shear Strength, MPa 290
390 to 490
Tensile Strength: Ultimate (UTS), MPa 450
550 to 780
Tensile Strength: Yield (Proof), MPa 290
200 to 390

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 450
420
Maximum Temperature: Mechanical, °C 1000
930
Melting Completion (Liquidus), °C 1430
1410
Melting Onset (Solidus), °C 1390
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 21
11
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
16
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.4
3.1
Embodied Energy, MJ/kg 34
43
Embodied Water, L/kg 140
150

Common Calculations

PREN (Pitting Resistance) 22
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
150 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 200
100 to 400
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 16
19 to 27
Strength to Weight: Bending, points 17
19 to 24
Thermal Diffusivity, mm2/s 5.6
3.0
Thermal Shock Resistance, points 15
12 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0 to 0.030
0 to 0.040
Chromium (Cr), % 20 to 24
17 to 19
Copper (Cu), % 0 to 0.5
3.0 to 4.0
Iron (Fe), % 73.2 to 79.6
63.3 to 71.5
Lanthanum (La), % 0.040 to 0.2
0
Manganese (Mn), % 0.3 to 0.8
0 to 2.0
Nickel (Ni), % 0
8.5 to 10.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.050
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.015
Titanium (Ti), % 0.030 to 0.2
0