MakeItFrom.com
Menu (ESC)

S44535 Stainless Steel vs. CC494K Bronze

S44535 stainless steel belongs to the iron alloys classification, while CC494K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44535 stainless steel and the bottom bar is CC494K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
67
Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 28
7.6
Poisson's Ratio 0.27
0.35
Shear Modulus, GPa 78
39
Tensile Strength: Ultimate (UTS), MPa 450
210
Tensile Strength: Yield (Proof), MPa 290
94

Thermal Properties

Latent Heat of Fusion, J/g 290
180
Maximum Temperature: Mechanical, °C 1000
160
Melting Completion (Liquidus), °C 1430
970
Melting Onset (Solidus), °C 1390
890
Specific Heat Capacity, J/kg-K 480
360
Thermal Conductivity, W/m-K 21
63
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
16
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
16

Otherwise Unclassified Properties

Base Metal Price, % relative 11
31
Density, g/cm3 7.7
9.1
Embodied Carbon, kg CO2/kg material 2.4
3.1
Embodied Energy, MJ/kg 34
50
Embodied Water, L/kg 140
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
13
Resilience: Unit (Modulus of Resilience), kJ/m3 200
43
Stiffness to Weight: Axial, points 14
6.4
Stiffness to Weight: Bending, points 25
17
Strength to Weight: Axial, points 16
6.5
Strength to Weight: Bending, points 17
8.8
Thermal Diffusivity, mm2/s 5.6
19
Thermal Shock Resistance, points 15
7.8

Alloy Composition

Aluminum (Al), % 0 to 0.5
0 to 0.010
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 24
0
Copper (Cu), % 0 to 0.5
78 to 87
Iron (Fe), % 73.2 to 79.6
0 to 0.25
Lanthanum (La), % 0.040 to 0.2
0
Lead (Pb), % 0
8.0 to 10
Manganese (Mn), % 0.3 to 0.8
0 to 0.2
Nickel (Ni), % 0
0 to 2.0
Phosphorus (P), % 0 to 0.050
0 to 0.1
Silicon (Si), % 0 to 0.5
0 to 0.010
Sulfur (S), % 0 to 0.020
0 to 0.1
Tin (Sn), % 0
4.0 to 6.0
Titanium (Ti), % 0.030 to 0.2
0
Zinc (Zn), % 0
0 to 2.0