MakeItFrom.com
Menu (ESC)

S44535 Stainless Steel vs. Grade C-5 Titanium

S44535 stainless steel belongs to the iron alloys classification, while grade C-5 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44535 stainless steel and the bottom bar is grade C-5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
310
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
6.7
Fatigue Strength, MPa 210
510
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 450
1000
Tensile Strength: Yield (Proof), MPa 290
940

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 1000
340
Melting Completion (Liquidus), °C 1430
1610
Melting Onset (Solidus), °C 1390
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 21
7.1
Thermal Expansion, µm/m-K 11
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
36
Density, g/cm3 7.7
4.4
Embodied Carbon, kg CO2/kg material 2.4
38
Embodied Energy, MJ/kg 34
610
Embodied Water, L/kg 140
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
66
Resilience: Unit (Modulus of Resilience), kJ/m3 200
4200
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 16
63
Strength to Weight: Bending, points 17
50
Thermal Diffusivity, mm2/s 5.6
2.9
Thermal Shock Resistance, points 15
71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.5
5.5 to 6.8
Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 20 to 24
0
Copper (Cu), % 0 to 0.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 73.2 to 79.6
0 to 0.4
Lanthanum (La), % 0.040 to 0.2
0
Manganese (Mn), % 0.3 to 0.8
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0.030 to 0.2
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4