MakeItFrom.com
Menu (ESC)

S44535 Stainless Steel vs. C10500 Copper

S44535 stainless steel belongs to the iron alloys classification, while C10500 copper belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S44535 stainless steel and the bottom bar is C10500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 28
2.8 to 51
Poisson's Ratio 0.27
0.34
Rockwell B Hardness 77
10 to 62
Shear Modulus, GPa 78
43
Shear Strength, MPa 290
150 to 210
Tensile Strength: Ultimate (UTS), MPa 450
220 to 400
Tensile Strength: Yield (Proof), MPa 290
75 to 400

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 1000
200
Melting Completion (Liquidus), °C 1430
1080
Melting Onset (Solidus), °C 1390
1080
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 21
390
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
100
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
100

Otherwise Unclassified Properties

Base Metal Price, % relative 11
32
Density, g/cm3 7.7
9.0
Embodied Carbon, kg CO2/kg material 2.4
2.6
Embodied Energy, MJ/kg 34
42
Embodied Water, L/kg 140
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
11 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 200
24 to 680
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 16
6.8 to 12
Strength to Weight: Bending, points 17
9.1 to 14
Thermal Diffusivity, mm2/s 5.6
110
Thermal Shock Resistance, points 15
7.8 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 24
0
Copper (Cu), % 0 to 0.5
99.89 to 99.966
Iron (Fe), % 73.2 to 79.6
0
Lanthanum (La), % 0.040 to 0.2
0
Manganese (Mn), % 0.3 to 0.8
0
Oxygen (O), % 0
0 to 0.0010
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.5
0
Silver (Ag), % 0
0.034 to 0.060
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0.030 to 0.2
0
Residuals, % 0
0 to 0.050