MakeItFrom.com
Menu (ESC)

S44535 Stainless Steel vs. C22000 Bronze

S44535 stainless steel belongs to the iron alloys classification, while C22000 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44535 stainless steel and the bottom bar is C22000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
1.9 to 45
Poisson's Ratio 0.27
0.33
Rockwell B Hardness 77
42 to 81
Shear Modulus, GPa 78
42
Shear Strength, MPa 290
200 to 300
Tensile Strength: Ultimate (UTS), MPa 450
260 to 520
Tensile Strength: Yield (Proof), MPa 290
69 to 500

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 1000
180
Melting Completion (Liquidus), °C 1430
1040
Melting Onset (Solidus), °C 1390
1020
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 21
190
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
44
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
45

Otherwise Unclassified Properties

Base Metal Price, % relative 11
29
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.4
2.6
Embodied Energy, MJ/kg 34
42
Embodied Water, L/kg 140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
3.7 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 200
21 to 1110
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 16
8.1 to 17
Strength to Weight: Bending, points 17
10 to 17
Thermal Diffusivity, mm2/s 5.6
56
Thermal Shock Resistance, points 15
8.8 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 24
0
Copper (Cu), % 0 to 0.5
89 to 91
Iron (Fe), % 73.2 to 79.6
0 to 0.050
Lanthanum (La), % 0.040 to 0.2
0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.3 to 0.8
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0.030 to 0.2
0
Zinc (Zn), % 0
8.7 to 11
Residuals, % 0
0 to 0.2