MakeItFrom.com
Menu (ESC)

S44535 Stainless Steel vs. C90200 Bronze

S44535 stainless steel belongs to the iron alloys classification, while C90200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44535 stainless steel and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
70
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
30
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 78
41
Tensile Strength: Ultimate (UTS), MPa 450
260
Tensile Strength: Yield (Proof), MPa 290
110

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 1000
180
Melting Completion (Liquidus), °C 1430
1050
Melting Onset (Solidus), °C 1390
880
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 21
62
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
13
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
13

Otherwise Unclassified Properties

Base Metal Price, % relative 11
34
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 2.4
3.3
Embodied Energy, MJ/kg 34
53
Embodied Water, L/kg 140
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
63
Resilience: Unit (Modulus of Resilience), kJ/m3 200
55
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 16
8.3
Strength to Weight: Bending, points 17
10
Thermal Diffusivity, mm2/s 5.6
19
Thermal Shock Resistance, points 15
9.5

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 24
0
Copper (Cu), % 0 to 0.5
91 to 94
Iron (Fe), % 73.2 to 79.6
0 to 0.2
Lanthanum (La), % 0.040 to 0.2
0
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0.3 to 0.8
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.050
0 to 0.050
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.020
0 to 0.050
Tin (Sn), % 0
6.0 to 8.0
Titanium (Ti), % 0.030 to 0.2
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.6