MakeItFrom.com
Menu (ESC)

S44535 Stainless Steel vs. C95520 Bronze

S44535 stainless steel belongs to the iron alloys classification, while C95520 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44535 stainless steel and the bottom bar is C95520 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
280
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 28
2.6
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 78
44
Tensile Strength: Ultimate (UTS), MPa 450
970
Tensile Strength: Yield (Proof), MPa 290
530

Thermal Properties

Latent Heat of Fusion, J/g 290
240
Maximum Temperature: Mechanical, °C 1000
240
Melting Completion (Liquidus), °C 1430
1070
Melting Onset (Solidus), °C 1390
1020
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 21
40
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
11
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
12

Otherwise Unclassified Properties

Base Metal Price, % relative 11
29
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 2.4
3.6
Embodied Energy, MJ/kg 34
58
Embodied Water, L/kg 140
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
21
Resilience: Unit (Modulus of Resilience), kJ/m3 200
1210
Stiffness to Weight: Axial, points 14
8.0
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 16
33
Strength to Weight: Bending, points 17
27
Thermal Diffusivity, mm2/s 5.6
11
Thermal Shock Resistance, points 15
33

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.5
10.5 to 11.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 24
0 to 0.050
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0 to 0.5
74.5 to 81.3
Iron (Fe), % 73.2 to 79.6
4.0 to 5.5
Lanthanum (La), % 0.040 to 0.2
0
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0.3 to 0.8
0 to 1.5
Nickel (Ni), % 0
4.2 to 6.0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.5
0 to 0.15
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.25
Titanium (Ti), % 0.030 to 0.2
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5