MakeItFrom.com
Menu (ESC)

S44535 Stainless Steel vs. S39277 Stainless Steel

Both S44535 stainless steel and S39277 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 83% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S44535 stainless steel and the bottom bar is S39277 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
250
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
28
Fatigue Strength, MPa 210
480
Poisson's Ratio 0.27
0.27
Shear Modulus, GPa 78
80
Shear Strength, MPa 290
600
Tensile Strength: Ultimate (UTS), MPa 450
930
Tensile Strength: Yield (Proof), MPa 290
660

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 450
450
Maximum Temperature: Mechanical, °C 1000
1100
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 21
16
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
23
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.4
4.2
Embodied Energy, MJ/kg 34
59
Embodied Water, L/kg 140
180

Common Calculations

PREN (Pitting Resistance) 22
43
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
240
Resilience: Unit (Modulus of Resilience), kJ/m3 200
1070
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 16
33
Strength to Weight: Bending, points 17
27
Thermal Diffusivity, mm2/s 5.6
4.2
Thermal Shock Resistance, points 15
26

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0 to 0.030
0 to 0.025
Chromium (Cr), % 20 to 24
24 to 26
Copper (Cu), % 0 to 0.5
1.2 to 2.0
Iron (Fe), % 73.2 to 79.6
56.8 to 64.3
Lanthanum (La), % 0.040 to 0.2
0
Manganese (Mn), % 0.3 to 0.8
0 to 0.8
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
6.5 to 8.0
Nitrogen (N), % 0
0.23 to 0.33
Phosphorus (P), % 0 to 0.050
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.8
Sulfur (S), % 0 to 0.020
0 to 0.0020
Titanium (Ti), % 0.030 to 0.2
0
Tungsten (W), % 0
0.8 to 1.2