MakeItFrom.com
Menu (ESC)

S44536 Stainless Steel vs. Grade 37 Titanium

S44536 stainless steel belongs to the iron alloys classification, while grade 37 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44536 stainless steel and the bottom bar is grade 37 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 22
22
Fatigue Strength, MPa 190
170
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 78
40
Shear Strength, MPa 290
240
Tensile Strength: Ultimate (UTS), MPa 460
390
Tensile Strength: Yield (Proof), MPa 280
250

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 990
310
Melting Completion (Liquidus), °C 1440
1650
Melting Onset (Solidus), °C 1390
1600
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 21
21
Thermal Expansion, µm/m-K 11
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
6.8

Otherwise Unclassified Properties

Base Metal Price, % relative 13
36
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.8
31
Embodied Energy, MJ/kg 41
500
Embodied Water, L/kg 140
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
76
Resilience: Unit (Modulus of Resilience), kJ/m3 200
280
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 17
24
Strength to Weight: Bending, points 17
26
Thermal Diffusivity, mm2/s 5.6
8.4
Thermal Shock Resistance, points 16
29

Alloy Composition

Aluminum (Al), % 0
1.0 to 2.0
Carbon (C), % 0 to 0.015
0 to 0.080
Chromium (Cr), % 20 to 23
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 72.8 to 80
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.050 to 0.8
0
Nitrogen (N), % 0 to 0.015
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.8
96.9 to 99
Residuals, % 0
0 to 0.4