MakeItFrom.com
Menu (ESC)

S44625 Stainless Steel vs. S20433 Stainless Steel

Both S44625 stainless steel and S20433 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 87% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S44625 stainless steel and the bottom bar is S20433 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 22
46
Fatigue Strength, MPa 240
250
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
76
Shear Strength, MPa 370
440
Tensile Strength: Ultimate (UTS), MPa 590
630
Tensile Strength: Yield (Proof), MPa 360
270

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 450
410
Maximum Temperature: Mechanical, °C 1100
900
Melting Completion (Liquidus), °C 1440
1400
Melting Onset (Solidus), °C 1400
1360
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 17
15
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 14
13
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 39
39
Embodied Water, L/kg 160
150

Common Calculations

PREN (Pitting Resistance) 30
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
230
Resilience: Unit (Modulus of Resilience), kJ/m3 310
180
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
23
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 4.6
4.0
Thermal Shock Resistance, points 19
14

Alloy Composition

Carbon (C), % 0 to 0.010
0 to 0.080
Chromium (Cr), % 25 to 27.5
17 to 18
Copper (Cu), % 0 to 0.2
1.5 to 3.5
Iron (Fe), % 69.4 to 74.3
64.1 to 72.4
Manganese (Mn), % 0 to 0.4
5.5 to 7.5
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 0 to 0.5
3.5 to 5.5
Nitrogen (N), % 0 to 0.015
0.1 to 0.25
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030