MakeItFrom.com
Menu (ESC)

S44626 Stainless Steel vs. C22000 Bronze

S44626 stainless steel belongs to the iron alloys classification, while C22000 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44626 stainless steel and the bottom bar is C22000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23
1.9 to 45
Poisson's Ratio 0.27
0.33
Rockwell B Hardness 83
42 to 81
Shear Modulus, GPa 80
42
Shear Strength, MPa 340
200 to 300
Tensile Strength: Ultimate (UTS), MPa 540
260 to 520
Tensile Strength: Yield (Proof), MPa 350
69 to 500

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1440
1040
Melting Onset (Solidus), °C 1390
1020
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 17
190
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
44
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
45

Otherwise Unclassified Properties

Base Metal Price, % relative 14
29
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.9
2.6
Embodied Energy, MJ/kg 42
42
Embodied Water, L/kg 160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
3.7 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 300
21 to 1110
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 26
18
Strength to Weight: Axial, points 19
8.1 to 17
Strength to Weight: Bending, points 19
10 to 17
Thermal Diffusivity, mm2/s 4.6
56
Thermal Shock Resistance, points 18
8.8 to 18

Alloy Composition

Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 25 to 27
0
Copper (Cu), % 0 to 0.2
89 to 91
Iron (Fe), % 68.1 to 74.1
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.75
0
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 0 to 0.5
0
Nitrogen (N), % 0 to 0.040
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0.2 to 1.0
0
Zinc (Zn), % 0
8.7 to 11
Residuals, % 0
0 to 0.2