MakeItFrom.com
Menu (ESC)

S44626 Stainless Steel vs. C41300 Brass

S44626 stainless steel belongs to the iron alloys classification, while C41300 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44626 stainless steel and the bottom bar is C41300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23
2.0 to 44
Poisson's Ratio 0.27
0.33
Rockwell B Hardness 83
53 to 88
Shear Modulus, GPa 80
42
Shear Strength, MPa 340
230 to 370
Tensile Strength: Ultimate (UTS), MPa 540
300 to 630
Tensile Strength: Yield (Proof), MPa 350
120 to 570

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1440
1040
Melting Onset (Solidus), °C 1390
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 17
130
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
31

Otherwise Unclassified Properties

Base Metal Price, % relative 14
29
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 42
44
Embodied Water, L/kg 160
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
11 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 300
69 to 1440
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 26
18
Strength to Weight: Axial, points 19
9.6 to 20
Strength to Weight: Bending, points 19
11 to 19
Thermal Diffusivity, mm2/s 4.6
40
Thermal Shock Resistance, points 18
11 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 25 to 27
0
Copper (Cu), % 0 to 0.2
89 to 93
Iron (Fe), % 68.1 to 74.1
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 0.75
0
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 0 to 0.5
0
Nitrogen (N), % 0 to 0.040
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0.7 to 1.3
Titanium (Ti), % 0.2 to 1.0
0
Zinc (Zn), % 0
5.1 to 10.3
Residuals, % 0
0 to 0.5