MakeItFrom.com
Menu (ESC)

S44626 Stainless Steel vs. C87800 Brass

S44626 stainless steel belongs to the iron alloys classification, while C87800 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44626 stainless steel and the bottom bar is C87800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23
25
Poisson's Ratio 0.27
0.33
Rockwell B Hardness 83
86
Shear Modulus, GPa 80
42
Tensile Strength: Ultimate (UTS), MPa 540
590
Tensile Strength: Yield (Proof), MPa 350
350

Thermal Properties

Latent Heat of Fusion, J/g 300
260
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1440
920
Melting Onset (Solidus), °C 1390
820
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 17
28
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 14
27
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 42
44
Embodied Water, L/kg 160
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
130
Resilience: Unit (Modulus of Resilience), kJ/m3 300
540
Stiffness to Weight: Axial, points 15
7.4
Stiffness to Weight: Bending, points 26
19
Strength to Weight: Axial, points 19
20
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 4.6
8.3
Thermal Shock Resistance, points 18
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 25 to 27
0
Copper (Cu), % 0 to 0.2
80 to 84.2
Iron (Fe), % 68.1 to 74.1
0 to 0.15
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 0.75
0 to 0.15
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 0 to 0.5
0 to 0.2
Nitrogen (N), % 0 to 0.040
0
Phosphorus (P), % 0 to 0.040
0 to 0.010
Silicon (Si), % 0 to 0.75
3.8 to 4.2
Sulfur (S), % 0 to 0.020
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Titanium (Ti), % 0.2 to 1.0
0
Zinc (Zn), % 0
12 to 16
Residuals, % 0
0 to 0.5