MakeItFrom.com
Menu (ESC)

S44626 Stainless Steel vs. C99300 Copper

S44626 stainless steel belongs to the iron alloys classification, while C99300 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44626 stainless steel and the bottom bar is C99300 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
200
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 23
2.0
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
46
Tensile Strength: Ultimate (UTS), MPa 540
660
Tensile Strength: Yield (Proof), MPa 350
380

Thermal Properties

Latent Heat of Fusion, J/g 300
240
Maximum Temperature: Mechanical, °C 1100
250
Melting Completion (Liquidus), °C 1440
1080
Melting Onset (Solidus), °C 1390
1070
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 17
43
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 14
35
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 2.9
4.5
Embodied Energy, MJ/kg 42
70
Embodied Water, L/kg 160
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
11
Resilience: Unit (Modulus of Resilience), kJ/m3 300
590
Stiffness to Weight: Axial, points 15
8.3
Stiffness to Weight: Bending, points 26
20
Strength to Weight: Axial, points 19
22
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 4.6
12
Thermal Shock Resistance, points 18
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
10.7 to 11.5
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 25 to 27
0
Cobalt (Co), % 0
1.0 to 2.0
Copper (Cu), % 0 to 0.2
68.6 to 74.4
Iron (Fe), % 68.1 to 74.1
0.4 to 1.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 0.75
0
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 0 to 0.5
13.5 to 16.5
Nitrogen (N), % 0 to 0.040
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0 to 0.020
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0.2 to 1.0
0
Residuals, % 0
0 to 0.3