MakeItFrom.com
Menu (ESC)

S44626 Stainless Steel vs. R58150 Titanium

S44626 stainless steel belongs to the iron alloys classification, while R58150 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is S44626 stainless steel and the bottom bar is R58150 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 23
13
Fatigue Strength, MPa 230
330
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 80
52
Shear Strength, MPa 340
470
Tensile Strength: Ultimate (UTS), MPa 540
770
Tensile Strength: Yield (Proof), MPa 350
550

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1100
320
Melting Completion (Liquidus), °C 1440
1760
Melting Onset (Solidus), °C 1390
1700
Specific Heat Capacity, J/kg-K 480
500
Thermal Expansion, µm/m-K 11
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 14
48
Density, g/cm3 7.7
5.4
Embodied Carbon, kg CO2/kg material 2.9
31
Embodied Energy, MJ/kg 42
480
Embodied Water, L/kg 160
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
94
Resilience: Unit (Modulus of Resilience), kJ/m3 300
1110
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
32
Strength to Weight: Axial, points 19
40
Strength to Weight: Bending, points 19
35
Thermal Shock Resistance, points 18
48

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.1
Chromium (Cr), % 25 to 27
0
Copper (Cu), % 0 to 0.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 68.1 to 74.1
0 to 0.1
Manganese (Mn), % 0 to 0.75
0
Molybdenum (Mo), % 0.75 to 1.5
14 to 16
Nickel (Ni), % 0 to 0.5
0
Nitrogen (N), % 0 to 0.040
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0.2 to 1.0
83.5 to 86