MakeItFrom.com
Menu (ESC)

S44626 Stainless Steel vs. S30415 Stainless Steel

Both S44626 stainless steel and S30415 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 89% of their average alloy composition in common.

For each property being compared, the top bar is S44626 stainless steel and the bottom bar is S30415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
45
Fatigue Strength, MPa 230
300
Poisson's Ratio 0.27
0.28
Rockwell B Hardness 83
84
Shear Modulus, GPa 80
77
Shear Strength, MPa 340
470
Tensile Strength: Ultimate (UTS), MPa 540
670
Tensile Strength: Yield (Proof), MPa 350
330

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 560
420
Maximum Temperature: Mechanical, °C 1100
940
Melting Completion (Liquidus), °C 1440
1410
Melting Onset (Solidus), °C 1390
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 17
21
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 14
15
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.9
3.1
Embodied Energy, MJ/kg 42
43
Embodied Water, L/kg 160
140

Common Calculations

PREN (Pitting Resistance) 30
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
250
Resilience: Unit (Modulus of Resilience), kJ/m3 300
280
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
25
Strength to Weight: Axial, points 19
24
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 4.6
5.6
Thermal Shock Resistance, points 18
15

Alloy Composition

Carbon (C), % 0 to 0.060
0.040 to 0.060
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 25 to 27
18 to 19
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 68.1 to 74.1
67.8 to 71.8
Manganese (Mn), % 0 to 0.75
0 to 0.8
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 0 to 0.5
9.0 to 10
Nitrogen (N), % 0 to 0.040
0.12 to 0.18
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 0.75
1.0 to 2.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0.2 to 1.0
0