MakeItFrom.com
Menu (ESC)

S44627 Stainless Steel vs. EN 2.4633 Nickel

S44627 stainless steel belongs to the iron alloys classification, while EN 2.4633 nickel belongs to the nickel alloys. They have a modest 35% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44627 stainless steel and the bottom bar is EN 2.4633 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 24
34
Fatigue Strength, MPa 200
230
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
76
Shear Strength, MPa 310
510
Tensile Strength: Ultimate (UTS), MPa 490
760
Tensile Strength: Yield (Proof), MPa 300
310

Thermal Properties

Latent Heat of Fusion, J/g 290
320
Maximum Temperature: Mechanical, °C 1100
1000
Melting Completion (Liquidus), °C 1440
1350
Melting Onset (Solidus), °C 1400
1300
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 17
11
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 14
50
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 2.9
8.4
Embodied Energy, MJ/kg 41
120
Embodied Water, L/kg 160
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
210
Resilience: Unit (Modulus of Resilience), kJ/m3 220
240
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
26
Strength to Weight: Bending, points 18
23
Thermal Diffusivity, mm2/s 4.6
2.9
Thermal Shock Resistance, points 16
22

Alloy Composition

Aluminum (Al), % 0
1.8 to 2.4
Carbon (C), % 0 to 0.010
0.15 to 0.25
Chromium (Cr), % 25 to 27.5
24 to 26
Copper (Cu), % 0 to 0.2
0 to 0.1
Iron (Fe), % 69.2 to 74.2
8.0 to 11
Manganese (Mn), % 0 to 0.4
0 to 0.5
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 0 to 0.5
58.8 to 65.9
Niobium (Nb), % 0.050 to 0.2
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.010
Titanium (Ti), % 0
0.1 to 0.2
Yttrium (Y), % 0
0.050 to 0.12
Zirconium (Zr), % 0
0.010 to 0.1