MakeItFrom.com
Menu (ESC)

S44627 Stainless Steel vs. CC499K Bronze

S44627 stainless steel belongs to the iron alloys classification, while CC499K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S44627 stainless steel and the bottom bar is CC499K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
73
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 24
13
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 80
41
Tensile Strength: Ultimate (UTS), MPa 490
260
Tensile Strength: Yield (Proof), MPa 300
120

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1440
1000
Melting Onset (Solidus), °C 1400
920
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 17
73
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
12

Otherwise Unclassified Properties

Base Metal Price, % relative 14
32
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 2.9
3.1
Embodied Energy, MJ/kg 41
51
Embodied Water, L/kg 160
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
27
Resilience: Unit (Modulus of Resilience), kJ/m3 220
65
Stiffness to Weight: Axial, points 15
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 18
8.1
Strength to Weight: Bending, points 18
10
Thermal Diffusivity, mm2/s 4.6
22
Thermal Shock Resistance, points 16
9.2

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.1
Arsenic (As), % 0
0 to 0.030
Bismuth (Bi), % 0
0 to 0.020
Cadmium (Cd), % 0
0 to 0.020
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 25 to 27.5
0 to 0.020
Copper (Cu), % 0 to 0.2
84 to 88
Iron (Fe), % 69.2 to 74.2
0 to 0.3
Lead (Pb), % 0
0 to 3.0
Manganese (Mn), % 0 to 0.4
0
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 0 to 0.5
0 to 0.6
Niobium (Nb), % 0.050 to 0.2
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 0.010
Sulfur (S), % 0 to 0.020
0 to 0.040
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 0
4.0 to 6.0