MakeItFrom.com
Menu (ESC)

S44627 Stainless Steel vs. SAE-AISI 8620 Steel

Both S44627 stainless steel and SAE-AISI 8620 steel are iron alloys. They have 73% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44627 stainless steel and the bottom bar is SAE-AISI 8620 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
150 to 210
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 24
13 to 31
Fatigue Strength, MPa 200
270 to 360
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 80
73
Shear Strength, MPa 310
340 to 420
Tensile Strength: Ultimate (UTS), MPa 490
520 to 690
Tensile Strength: Yield (Proof), MPa 300
360 to 570

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 1100
410
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
39
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 14
2.6
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.5
Embodied Energy, MJ/kg 41
20
Embodied Water, L/kg 160
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
86 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 220
340 to 880
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
18 to 24
Strength to Weight: Bending, points 18
18 to 22
Thermal Diffusivity, mm2/s 4.6
10
Thermal Shock Resistance, points 16
15 to 20

Alloy Composition

Carbon (C), % 0 to 0.010
0.18 to 0.23
Chromium (Cr), % 25 to 27.5
0.4 to 0.6
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 69.2 to 74.2
96.9 to 98
Manganese (Mn), % 0 to 0.4
0.7 to 0.9
Molybdenum (Mo), % 0.75 to 1.5
0.15 to 0.25
Nickel (Ni), % 0 to 0.5
0.4 to 0.7
Niobium (Nb), % 0.050 to 0.2
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.4
0.15 to 0.35
Sulfur (S), % 0 to 0.020
0 to 0.040