MakeItFrom.com
Menu (ESC)

S44627 Stainless Steel vs. S40910 Stainless Steel

Both S44627 stainless steel and S40910 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 84% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S44627 stainless steel and the bottom bar is S40910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 24
23
Fatigue Strength, MPa 200
130
Poisson's Ratio 0.27
0.28
Rockwell B Hardness 79
76
Shear Modulus, GPa 80
75
Shear Strength, MPa 310
270
Tensile Strength: Ultimate (UTS), MPa 490
430
Tensile Strength: Yield (Proof), MPa 300
190

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 470
440
Maximum Temperature: Mechanical, °C 1100
710
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 17
26
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 14
7.0
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.9
2.0
Embodied Energy, MJ/kg 41
28
Embodied Water, L/kg 160
94

Common Calculations

PREN (Pitting Resistance) 30
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
80
Resilience: Unit (Modulus of Resilience), kJ/m3 220
94
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
16
Strength to Weight: Bending, points 18
16
Thermal Diffusivity, mm2/s 4.6
6.9
Thermal Shock Resistance, points 16
16

Alloy Composition

Carbon (C), % 0 to 0.010
0 to 0.030
Chromium (Cr), % 25 to 27.5
10.5 to 11.7
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 69.2 to 74.2
85 to 89.5
Manganese (Mn), % 0 to 0.4
0 to 1.0
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 0 to 0.5
0 to 0.5
Niobium (Nb), % 0.050 to 0.2
0 to 0.17
Nitrogen (N), % 0 to 0.015
0 to 0.030
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.020
Titanium (Ti), % 0
0 to 0.5