MakeItFrom.com
Menu (ESC)

S44627 Stainless Steel vs. S44800 Stainless Steel

Both S44627 stainless steel and S44800 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 93% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S44627 stainless steel and the bottom bar is S44800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
190
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 24
23
Fatigue Strength, MPa 200
300
Poisson's Ratio 0.27
0.27
Reduction in Area, % 51
45
Shear Modulus, GPa 80
82
Shear Strength, MPa 310
370
Tensile Strength: Ultimate (UTS), MPa 490
590
Tensile Strength: Yield (Proof), MPa 300
450

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 470
460
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 17
17
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 14
19
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.9
3.8
Embodied Energy, MJ/kg 41
52
Embodied Water, L/kg 160
190

Common Calculations

PREN (Pitting Resistance) 30
42
Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
120
Resilience: Unit (Modulus of Resilience), kJ/m3 220
480
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
21
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 4.6
4.6
Thermal Shock Resistance, points 16
19

Alloy Composition

Carbon (C), % 0 to 0.010
0 to 0.010
Chromium (Cr), % 25 to 27.5
28 to 30
Copper (Cu), % 0 to 0.2
0 to 0.15
Iron (Fe), % 69.2 to 74.2
62.6 to 66.5
Manganese (Mn), % 0 to 0.4
0 to 0.3
Molybdenum (Mo), % 0.75 to 1.5
3.5 to 4.2
Nickel (Ni), % 0 to 0.5
2.0 to 2.5
Niobium (Nb), % 0.050 to 0.2
0
Nitrogen (N), % 0 to 0.015
0 to 0.020
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.2
Sulfur (S), % 0 to 0.020
0 to 0.020