MakeItFrom.com
Menu (ESC)

S44635 Stainless Steel vs. EN 2.4632 Nickel

S44635 stainless steel belongs to the iron alloys classification, while EN 2.4632 nickel belongs to the nickel alloys. They have a modest 26% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44635 stainless steel and the bottom bar is EN 2.4632 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 23
17
Fatigue Strength, MPa 390
430
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 81
76
Shear Strength, MPa 450
770
Tensile Strength: Ultimate (UTS), MPa 710
1250
Tensile Strength: Yield (Proof), MPa 580
780

Thermal Properties

Latent Heat of Fusion, J/g 300
320
Maximum Temperature: Mechanical, °C 1100
1010
Melting Completion (Liquidus), °C 1460
1340
Melting Onset (Solidus), °C 1420
1290
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 16
13
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 22
75
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 4.4
9.4
Embodied Energy, MJ/kg 62
130
Embodied Water, L/kg 170
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
180
Resilience: Unit (Modulus of Resilience), kJ/m3 810
1570
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 25
42
Strength to Weight: Bending, points 23
31
Thermal Diffusivity, mm2/s 4.4
3.3
Thermal Shock Resistance, points 23
39

Alloy Composition

Aluminum (Al), % 0
1.0 to 2.0
Boron (B), % 0
0 to 0.020
Carbon (C), % 0 to 0.025
0 to 0.13
Chromium (Cr), % 24.5 to 26
18 to 21
Cobalt (Co), % 0
15 to 21
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 61.5 to 68.5
0 to 1.5
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 3.5 to 4.5
49 to 64
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0.2 to 0.8
2.0 to 3.0
Zirconium (Zr), % 0
0 to 0.15