MakeItFrom.com
Menu (ESC)

S44660 Stainless Steel vs. AWS E80C-Ni1

Both S44660 stainless steel and AWS E80C-Ni1 are iron alloys. They have 68% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S44660 stainless steel and the bottom bar is AWS E80C-Ni1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 20
27
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 81
72
Tensile Strength: Ultimate (UTS), MPa 660
620
Tensile Strength: Yield (Proof), MPa 510
540

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
40
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 21
2.6
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 4.3
1.6
Embodied Energy, MJ/kg 61
21
Embodied Water, L/kg 180
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
160
Resilience: Unit (Modulus of Resilience), kJ/m3 640
770
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24
22
Strength to Weight: Bending, points 22
21
Thermal Diffusivity, mm2/s 4.5
11
Thermal Shock Resistance, points 21
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.030
0 to 0.12
Chromium (Cr), % 25 to 28
0
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 60.4 to 71
95.1 to 99.2
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 3.0 to 4.0
0 to 0.3
Nickel (Ni), % 1.0 to 3.5
0.8 to 1.1
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.040
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.9
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.2 to 1.0
0
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5