MakeItFrom.com
Menu (ESC)

S44660 Stainless Steel vs. EN 1.1170 Steel

Both S44660 stainless steel and EN 1.1170 steel are iron alloys. They have 67% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44660 stainless steel and the bottom bar is EN 1.1170 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
180 to 210
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 20
16 to 17
Fatigue Strength, MPa 330
220 to 330
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 81
73
Shear Strength, MPa 410
390 to 450
Tensile Strength: Ultimate (UTS), MPa 660
640 to 730
Tensile Strength: Yield (Proof), MPa 510
330 to 500

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
50
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 21
2.1
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 4.3
1.5
Embodied Energy, MJ/kg 61
19
Embodied Water, L/kg 180
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
91 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 640
290 to 670
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24
23 to 26
Strength to Weight: Bending, points 22
21 to 23
Thermal Diffusivity, mm2/s 4.5
13
Thermal Shock Resistance, points 21
20 to 23

Alloy Composition

Carbon (C), % 0 to 0.030
0.25 to 0.32
Chromium (Cr), % 25 to 28
0 to 0.4
Iron (Fe), % 60.4 to 71
96.7 to 98.5
Manganese (Mn), % 0 to 1.0
1.3 to 1.7
Molybdenum (Mo), % 3.0 to 4.0
0 to 0.1
Nickel (Ni), % 1.0 to 3.5
0 to 0.4
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.040
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.035
Titanium (Ti), % 0.2 to 1.0
0