MakeItFrom.com
Menu (ESC)

S44660 Stainless Steel vs. S44330 Stainless Steel

Both S44660 stainless steel and S44330 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 89% of their average alloy composition in common.

For each property being compared, the top bar is S44660 stainless steel and the bottom bar is S44330 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
160
Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 20
25
Fatigue Strength, MPa 330
160
Poisson's Ratio 0.27
0.27
Rockwell B Hardness 88
79
Shear Modulus, GPa 81
78
Shear Strength, MPa 410
280
Tensile Strength: Ultimate (UTS), MPa 660
440
Tensile Strength: Yield (Proof), MPa 510
230

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 640
560
Maximum Temperature: Mechanical, °C 1100
990
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1410
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 17
21
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 21
13
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 4.3
2.8
Embodied Energy, MJ/kg 61
40
Embodied Water, L/kg 180
140

Common Calculations

PREN (Pitting Resistance) 38
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
91
Resilience: Unit (Modulus of Resilience), kJ/m3 640
140
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
16
Strength to Weight: Bending, points 22
17
Thermal Diffusivity, mm2/s 4.5
5.7
Thermal Shock Resistance, points 21
16

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.025
Chromium (Cr), % 25 to 28
20 to 23
Copper (Cu), % 0
0.3 to 0.8
Iron (Fe), % 60.4 to 71
72.5 to 79.7
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 1.0 to 3.5
0
Niobium (Nb), % 0.2 to 1.0
0 to 0.8
Nitrogen (N), % 0 to 0.040
0 to 0.025
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.2 to 1.0
0 to 0.8