MakeItFrom.com
Menu (ESC)

S44725 Stainless Steel vs. EN 1.8893 Steel

Both S44725 stainless steel and EN 1.8893 steel are iron alloys. They have 72% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44725 stainless steel and the bottom bar is EN 1.8893 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
250
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 22
16
Fatigue Strength, MPa 210
470
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 81
73
Shear Strength, MPa 320
510
Tensile Strength: Ultimate (UTS), MPa 500
830
Tensile Strength: Yield (Proof), MPa 310
720

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 1100
410
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
40
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 15
2.9
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.1
1.7
Embodied Energy, MJ/kg 44
23
Embodied Water, L/kg 170
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
130
Resilience: Unit (Modulus of Resilience), kJ/m3 240
1370
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
29
Strength to Weight: Bending, points 18
25
Thermal Diffusivity, mm2/s 4.6
11
Thermal Shock Resistance, points 16
24

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.015
0 to 0.2
Chromium (Cr), % 25 to 28.5
0 to 0.3
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 67.6 to 73.5
95.6 to 98
Manganese (Mn), % 0 to 0.4
1.4 to 1.7
Molybdenum (Mo), % 1.5 to 2.5
0.3 to 0.45
Nickel (Ni), % 0 to 0.3
0.3 to 0.7
Niobium (Nb), % 0 to 0.26
0 to 0.050
Nitrogen (N), % 0 to 0.018
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 0.040
0 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.025
Titanium (Ti), % 0 to 0.26
0 to 0.050
Vanadium (V), % 0
0 to 0.12