MakeItFrom.com
Menu (ESC)

S44800 Stainless Steel vs. C85400 Brass

S44800 stainless steel belongs to the iron alloys classification, while C85400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S44800 stainless steel and the bottom bar is C85400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
55
Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 23
23
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 82
40
Tensile Strength: Ultimate (UTS), MPa 590
220
Tensile Strength: Yield (Proof), MPa 450
85

Thermal Properties

Latent Heat of Fusion, J/g 300
180
Maximum Temperature: Mechanical, °C 1100
130
Melting Completion (Liquidus), °C 1460
940
Melting Onset (Solidus), °C 1410
940
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 17
89
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
20
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
22

Otherwise Unclassified Properties

Base Metal Price, % relative 19
25
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 3.8
2.8
Embodied Energy, MJ/kg 52
46
Embodied Water, L/kg 190
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
40
Resilience: Unit (Modulus of Resilience), kJ/m3 480
35
Stiffness to Weight: Axial, points 15
7.0
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21
7.5
Strength to Weight: Bending, points 20
9.9
Thermal Diffusivity, mm2/s 4.6
28
Thermal Shock Resistance, points 19
7.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.35
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 28 to 30
0
Copper (Cu), % 0 to 0.15
65 to 70
Iron (Fe), % 62.6 to 66.5
0 to 0.7
Lead (Pb), % 0
1.5 to 3.8
Manganese (Mn), % 0 to 0.3
0
Molybdenum (Mo), % 3.5 to 4.2
0
Nickel (Ni), % 2.0 to 2.5
0 to 1.0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.2
0 to 0.050
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
24 to 32
Residuals, % 0
0 to 1.1