MakeItFrom.com
Menu (ESC)

S46800 Stainless Steel vs. EN 1.8867 Steel

Both S46800 stainless steel and EN 1.8867 steel are iron alloys. They have 80% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S46800 stainless steel and the bottom bar is EN 1.8867 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 25
25
Fatigue Strength, MPa 160
260
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 300
350
Tensile Strength: Ultimate (UTS), MPa 470
540
Tensile Strength: Yield (Proof), MPa 230
360

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 920
410
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 23
48
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 12
2.4
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.6
Embodied Energy, MJ/kg 37
21
Embodied Water, L/kg 130
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98
120
Resilience: Unit (Modulus of Resilience), kJ/m3 130
340
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
19
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 6.1
13
Thermal Shock Resistance, points 16
16

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.030
0 to 0.16
Chromium (Cr), % 18 to 20
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 76.5 to 81.8
96.3 to 100
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.25
Nickel (Ni), % 0 to 0.5
0 to 0.5
Niobium (Nb), % 0.1 to 0.6
0 to 0.050
Nitrogen (N), % 0 to 0.030
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0.070 to 0.3
0 to 0.030
Vanadium (V), % 0
0 to 0.060
Zirconium (Zr), % 0
0 to 0.050