MakeItFrom.com
Menu (ESC)

S46800 Stainless Steel vs. N08535 Stainless Steel

Both S46800 stainless steel and N08535 stainless steel are iron alloys. They have 57% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S46800 stainless steel and the bottom bar is N08535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 25
46
Fatigue Strength, MPa 160
220
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
80
Shear Strength, MPa 300
400
Tensile Strength: Ultimate (UTS), MPa 470
570
Tensile Strength: Yield (Proof), MPa 230
240

Thermal Properties

Latent Heat of Fusion, J/g 290
310
Maximum Temperature: Corrosion, °C 500
450
Maximum Temperature: Mechanical, °C 920
1100
Melting Completion (Liquidus), °C 1440
1420
Melting Onset (Solidus), °C 1400
1370
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 23
13
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
36
Density, g/cm3 7.7
8.1
Embodied Carbon, kg CO2/kg material 2.6
6.3
Embodied Energy, MJ/kg 37
87
Embodied Water, L/kg 130
230

Common Calculations

PREN (Pitting Resistance) 19
36
Resilience: Ultimate (Unit Rupture Work), MJ/m3 98
210
Resilience: Unit (Modulus of Resilience), kJ/m3 130
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
20
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 6.1
3.3
Thermal Shock Resistance, points 16
13

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 18 to 20
24 to 27
Copper (Cu), % 0
0 to 1.5
Iron (Fe), % 76.5 to 81.8
29.4 to 44.5
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0 to 0.5
29 to 36.5
Niobium (Nb), % 0.1 to 0.6
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.070 to 0.3
0