MakeItFrom.com
Menu (ESC)

S64512 Stainless Steel vs. EN 1.0566 Steel

Both S64512 stainless steel and EN 1.0566 steel are iron alloys. They have 84% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S64512 stainless steel and the bottom bar is EN 1.0566 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 330
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 17
24
Fatigue Strength, MPa 540
270
Impact Strength: V-Notched Charpy, J 47
79
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 700
350
Tensile Strength: Ultimate (UTS), MPa 1140
550
Tensile Strength: Yield (Proof), MPa 890
370

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 750
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 28
50
Thermal Expansion, µm/m-K 10
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 4.1
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.3
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.3
1.6
Embodied Energy, MJ/kg 47
22
Embodied Water, L/kg 110
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
120
Resilience: Unit (Modulus of Resilience), kJ/m3 2020
360
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 40
19
Strength to Weight: Bending, points 31
19
Thermal Diffusivity, mm2/s 7.5
14
Thermal Shock Resistance, points 42
17

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.024
Carbon (C), % 0.080 to 0.15
0 to 0.18
Chromium (Cr), % 11 to 12.5
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 80.6 to 84.7
96.2 to 98.9
Manganese (Mn), % 0.5 to 0.9
1.1 to 1.7
Molybdenum (Mo), % 1.5 to 2.0
0 to 0.080
Nickel (Ni), % 2.0 to 3.0
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0.010 to 0.050
0 to 0.012
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.35
0 to 0.5
Sulfur (S), % 0 to 0.025
0 to 0.0080
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0.25 to 0.4
0 to 0.1