MakeItFrom.com
Menu (ESC)

S64512 Stainless Steel vs. CC764S Brass

S64512 stainless steel belongs to the iron alloys classification, while CC764S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S64512 stainless steel and the bottom bar is CC764S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 330
160
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 17
15
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
41
Tensile Strength: Ultimate (UTS), MPa 1140
680
Tensile Strength: Yield (Proof), MPa 890
290

Thermal Properties

Latent Heat of Fusion, J/g 270
180
Maximum Temperature: Mechanical, °C 750
130
Melting Completion (Liquidus), °C 1460
850
Melting Onset (Solidus), °C 1420
810
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 28
94
Thermal Expansion, µm/m-K 10
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
32
Electrical Conductivity: Equal Weight (Specific), % IACS 4.1
36

Otherwise Unclassified Properties

Base Metal Price, % relative 10
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.3
2.9
Embodied Energy, MJ/kg 47
49
Embodied Water, L/kg 110
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
80
Resilience: Unit (Modulus of Resilience), kJ/m3 2020
390
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 40
24
Strength to Weight: Bending, points 31
22
Thermal Diffusivity, mm2/s 7.5
30
Thermal Shock Resistance, points 42
22

Alloy Composition

Aluminum (Al), % 0
1.0 to 3.0
Antimony (Sb), % 0
0 to 0.050
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
52 to 66
Iron (Fe), % 80.6 to 84.7
0.5 to 2.5
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0.5 to 0.9
0.3 to 4.0
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 2.0 to 3.0
0 to 3.0
Nitrogen (N), % 0.010 to 0.050
0
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.35
0 to 0.1
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.3
Vanadium (V), % 0.25 to 0.4
0
Zinc (Zn), % 0
20.7 to 50.2