MakeItFrom.com
Menu (ESC)

S64512 Stainless Steel vs. Grade 9 Titanium

S64512 stainless steel belongs to the iron alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S64512 stainless steel and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 17
11 to 17
Fatigue Strength, MPa 540
330 to 480
Poisson's Ratio 0.28
0.32
Reduction in Area, % 34
28
Shear Modulus, GPa 76
40
Shear Strength, MPa 700
430 to 580
Tensile Strength: Ultimate (UTS), MPa 1140
700 to 960
Tensile Strength: Yield (Proof), MPa 890
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 270
410
Maximum Temperature: Mechanical, °C 750
330
Melting Completion (Liquidus), °C 1460
1640
Melting Onset (Solidus), °C 1420
1590
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 28
8.1
Thermal Expansion, µm/m-K 10
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 4.1
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.3
36
Embodied Energy, MJ/kg 47
580
Embodied Water, L/kg 110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 2020
1380 to 3220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 40
43 to 60
Strength to Weight: Bending, points 31
39 to 48
Thermal Diffusivity, mm2/s 7.5
3.3
Thermal Shock Resistance, points 42
52 to 71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0.080 to 0.15
0 to 0.080
Chromium (Cr), % 11 to 12.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 80.6 to 84.7
0 to 0.25
Manganese (Mn), % 0.5 to 0.9
0
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 2.0 to 3.0
0
Nitrogen (N), % 0.010 to 0.050
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.35
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
92.6 to 95.5
Vanadium (V), % 0.25 to 0.4
2.0 to 3.0
Residuals, % 0
0 to 0.4