MakeItFrom.com
Menu (ESC)

S64512 Stainless Steel vs. C16200 Copper

S64512 stainless steel belongs to the iron alloys classification, while C16200 copper belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S64512 stainless steel and the bottom bar is C16200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 17
2.0 to 56
Fatigue Strength, MPa 540
100 to 210
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 700
190 to 390
Tensile Strength: Ultimate (UTS), MPa 1140
240 to 550
Tensile Strength: Yield (Proof), MPa 890
48 to 470

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Maximum Temperature: Mechanical, °C 750
370
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1030
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 28
360
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
90
Electrical Conductivity: Equal Weight (Specific), % IACS 4.1
90

Otherwise Unclassified Properties

Base Metal Price, % relative 10
30
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 3.3
2.6
Embodied Energy, MJ/kg 47
41
Embodied Water, L/kg 110
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
10 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 2020
10 to 970
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 40
7.4 to 17
Strength to Weight: Bending, points 31
9.6 to 17
Thermal Diffusivity, mm2/s 7.5
100
Thermal Shock Resistance, points 42
8.7 to 20

Alloy Composition

Cadmium (Cd), % 0
0.7 to 1.2
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
98.6 to 99.3
Iron (Fe), % 80.6 to 84.7
0 to 0.2
Manganese (Mn), % 0.5 to 0.9
0
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 2.0 to 3.0
0
Nitrogen (N), % 0.010 to 0.050
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.35
0
Sulfur (S), % 0 to 0.025
0
Vanadium (V), % 0.25 to 0.4
0