MakeItFrom.com
Menu (ESC)

S64512 Stainless Steel vs. C18900 Copper

S64512 stainless steel belongs to the iron alloys classification, while C18900 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S64512 stainless steel and the bottom bar is C18900 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 17
14 to 48
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 700
190 to 300
Tensile Strength: Ultimate (UTS), MPa 1140
260 to 500
Tensile Strength: Yield (Proof), MPa 890
67 to 390

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Maximum Temperature: Mechanical, °C 750
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1020
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 28
130
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
30
Electrical Conductivity: Equal Weight (Specific), % IACS 4.1
30

Otherwise Unclassified Properties

Base Metal Price, % relative 10
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 3.3
2.7
Embodied Energy, MJ/kg 47
42
Embodied Water, L/kg 110
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
65 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 2020
20 to 660
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 40
8.2 to 16
Strength to Weight: Bending, points 31
10 to 16
Thermal Diffusivity, mm2/s 7.5
38
Thermal Shock Resistance, points 42
9.3 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.010
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
97.7 to 99.15
Iron (Fe), % 80.6 to 84.7
0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.5 to 0.9
0.1 to 0.3
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 2.0 to 3.0
0
Nitrogen (N), % 0.010 to 0.050
0
Phosphorus (P), % 0 to 0.025
0 to 0.050
Silicon (Si), % 0 to 0.35
0.15 to 0.4
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0.6 to 0.9
Vanadium (V), % 0.25 to 0.4
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5