MakeItFrom.com
Menu (ESC)

S64512 Stainless Steel vs. C68000 Brass

S64512 stainless steel belongs to the iron alloys classification, while C68000 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is S64512 stainless steel and the bottom bar is C68000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 17
27
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 1140
390
Tensile Strength: Yield (Proof), MPa 890
140

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Maximum Temperature: Mechanical, °C 750
120
Melting Completion (Liquidus), °C 1460
880
Melting Onset (Solidus), °C 1420
870
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 28
96
Thermal Expansion, µm/m-K 10
21

Otherwise Unclassified Properties

Base Metal Price, % relative 10
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.3
2.8
Embodied Energy, MJ/kg 47
48
Embodied Water, L/kg 110
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
82
Resilience: Unit (Modulus of Resilience), kJ/m3 2020
95
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 40
14
Strength to Weight: Bending, points 31
15
Thermal Diffusivity, mm2/s 7.5
31
Thermal Shock Resistance, points 42
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.010
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
56 to 60
Iron (Fe), % 80.6 to 84.7
0.25 to 1.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.5 to 0.9
0.010 to 0.5
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 2.0 to 3.0
0.2 to 0.8
Nitrogen (N), % 0.010 to 0.050
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.35
0.040 to 0.15
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0.75 to 1.1
Vanadium (V), % 0.25 to 0.4
0
Zinc (Zn), % 0
35.6 to 42.8
Residuals, % 0
0 to 0.5