MakeItFrom.com
Menu (ESC)

S64512 Stainless Steel vs. C95410 Bronze

S64512 stainless steel belongs to the iron alloys classification, while C95410 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S64512 stainless steel and the bottom bar is C95410 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 330
160 to 200
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 17
9.1 to 13
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Tensile Strength: Ultimate (UTS), MPa 1140
620 to 740
Tensile Strength: Yield (Proof), MPa 890
260 to 380

Thermal Properties

Latent Heat of Fusion, J/g 270
230
Maximum Temperature: Mechanical, °C 750
230
Melting Completion (Liquidus), °C 1460
1040
Melting Onset (Solidus), °C 1420
1030
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 28
59
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
13
Electrical Conductivity: Equal Weight (Specific), % IACS 4.1
14

Otherwise Unclassified Properties

Base Metal Price, % relative 10
28
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 3.3
3.3
Embodied Energy, MJ/kg 47
54
Embodied Water, L/kg 110
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
57 to 64
Resilience: Unit (Modulus of Resilience), kJ/m3 2020
280 to 630
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 40
21 to 25
Strength to Weight: Bending, points 31
20 to 22
Thermal Diffusivity, mm2/s 7.5
16
Thermal Shock Resistance, points 42
22 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
10 to 11.5
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
83 to 85.5
Iron (Fe), % 80.6 to 84.7
3.0 to 5.0
Manganese (Mn), % 0.5 to 0.9
0 to 0.5
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 2.0 to 3.0
1.5 to 2.5
Nitrogen (N), % 0.010 to 0.050
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.35
0
Sulfur (S), % 0 to 0.025
0
Vanadium (V), % 0.25 to 0.4
0
Residuals, % 0
0 to 0.5