MakeItFrom.com
Menu (ESC)

S81921 Stainless Steel vs. EN 1.0590 Steel

Both S81921 stainless steel and EN 1.0590 steel are iron alloys. They have 73% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S81921 stainless steel and the bottom bar is EN 1.0590 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
180
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 29
19
Fatigue Strength, MPa 370
290
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 79
73
Shear Strength, MPa 460
380
Tensile Strength: Ultimate (UTS), MPa 710
620
Tensile Strength: Yield (Proof), MPa 500
430

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 990
400
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
51
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 14
2.1
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.6
Embodied Energy, MJ/kg 41
22
Embodied Water, L/kg 150
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
110
Resilience: Unit (Modulus of Resilience), kJ/m3 630
480
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25
22
Strength to Weight: Bending, points 23
21
Thermal Diffusivity, mm2/s 4.0
14
Thermal Shock Resistance, points 20
20

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.24
Chromium (Cr), % 19 to 22
0
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 66.7 to 75.9
96.4 to 100
Manganese (Mn), % 2.0 to 4.0
0 to 1.8
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 2.0 to 4.0
0
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0.14 to 0.2
0 to 0.027
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.040
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.15