MakeItFrom.com
Menu (ESC)

S81921 Stainless Steel vs. C71580 Copper-nickel

S81921 stainless steel belongs to the iron alloys classification, while C71580 copper-nickel belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S81921 stainless steel and the bottom bar is C71580 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
75
Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 29
40
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
51
Shear Strength, MPa 460
230
Tensile Strength: Ultimate (UTS), MPa 710
330
Tensile Strength: Yield (Proof), MPa 500
110

Thermal Properties

Latent Heat of Fusion, J/g 290
230
Maximum Temperature: Mechanical, °C 990
260
Melting Completion (Liquidus), °C 1430
1180
Melting Onset (Solidus), °C 1390
1120
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 15
39
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
4.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
4.7

Otherwise Unclassified Properties

Base Metal Price, % relative 14
41
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.9
5.1
Embodied Energy, MJ/kg 41
74
Embodied Water, L/kg 150
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
100
Resilience: Unit (Modulus of Resilience), kJ/m3 630
47
Stiffness to Weight: Axial, points 14
8.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 25
10
Strength to Weight: Bending, points 23
12
Thermal Diffusivity, mm2/s 4.0
11
Thermal Shock Resistance, points 20
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.030
0 to 0.070
Chromium (Cr), % 19 to 22
0
Copper (Cu), % 0
65.5 to 71
Iron (Fe), % 66.7 to 75.9
0 to 0.5
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 2.0 to 4.0
0 to 0.3
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 2.0 to 4.0
29 to 33
Nitrogen (N), % 0.14 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.5