MakeItFrom.com
Menu (ESC)

S82012 Stainless Steel vs. C87500 Brass

S82012 stainless steel belongs to the iron alloys classification, while C87500 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S82012 stainless steel and the bottom bar is C87500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 40
18
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
42
Tensile Strength: Ultimate (UTS), MPa 800
460
Tensile Strength: Yield (Proof), MPa 560
190

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Maximum Temperature: Mechanical, °C 950
170
Melting Completion (Liquidus), °C 1430
920
Melting Onset (Solidus), °C 1380
820
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 15
28
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
27
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 2.4
2.7
Embodied Energy, MJ/kg 35
44
Embodied Water, L/kg 140
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
67
Resilience: Unit (Modulus of Resilience), kJ/m3 790
160
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 29
16
Strength to Weight: Bending, points 25
16
Thermal Diffusivity, mm2/s 3.9
8.3
Thermal Shock Resistance, points 23
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 19 to 20.5
0
Copper (Cu), % 0 to 1.0
79 to 85
Iron (Fe), % 71.3 to 77.9
0
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 2.0 to 4.0
0
Molybdenum (Mo), % 0.1 to 0.6
0
Nickel (Ni), % 0.8 to 1.5
0
Nitrogen (N), % 0.16 to 0.26
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.8
3.0 to 5.0
Sulfur (S), % 0 to 0.0050
0
Zinc (Zn), % 0
12 to 16
Residuals, % 0
0 to 0.5