MakeItFrom.com
Menu (ESC)

S82031 Stainless Steel vs. EN 1.4923 Stainless Steel

Both S82031 stainless steel and EN 1.4923 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S82031 stainless steel and the bottom bar is EN 1.4923 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
12 to 21
Fatigue Strength, MPa 490
300 to 440
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Shear Strength, MPa 540
540 to 590
Tensile Strength: Ultimate (UTS), MPa 780
870 to 980
Tensile Strength: Yield (Proof), MPa 570
470 to 780

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 430
380
Maximum Temperature: Mechanical, °C 980
740
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1390
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
24
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
8.0
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.9
Embodied Energy, MJ/kg 39
41
Embodied Water, L/kg 150
100

Common Calculations

PREN (Pitting Resistance) 27
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 820
570 to 1580
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28
31 to 35
Strength to Weight: Bending, points 24
26 to 28
Thermal Diffusivity, mm2/s 3.9
6.5
Thermal Shock Resistance, points 22
30 to 34

Alloy Composition

Carbon (C), % 0 to 0.050
0.18 to 0.24
Chromium (Cr), % 19 to 22
11 to 12.5
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 68 to 78.3
83.5 to 87.1
Manganese (Mn), % 0 to 2.5
0.4 to 0.9
Molybdenum (Mo), % 0.6 to 1.4
0.8 to 1.2
Nickel (Ni), % 2.0 to 4.0
0.3 to 0.8
Nitrogen (N), % 0.14 to 0.24
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 0.8
0 to 0.5
Sulfur (S), % 0 to 0.0050
0 to 0.015
Vanadium (V), % 0
0.25 to 0.35