MakeItFrom.com
Menu (ESC)

S82031 Stainless Steel vs. EN 1.5450 Steel

Both S82031 stainless steel and EN 1.5450 steel are iron alloys. They have 75% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S82031 stainless steel and the bottom bar is EN 1.5450 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
19
Fatigue Strength, MPa 490
310
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 540
380
Tensile Strength: Ultimate (UTS), MPa 780
620
Tensile Strength: Yield (Proof), MPa 570
460

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 980
410
Melting Completion (Liquidus), °C 1430
1470
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
49
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 13
2.4
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.5
Embodied Energy, MJ/kg 39
20
Embodied Water, L/kg 150
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
110
Resilience: Unit (Modulus of Resilience), kJ/m3 820
550
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 28
22
Strength to Weight: Bending, points 24
20
Thermal Diffusivity, mm2/s 3.9
13
Thermal Shock Resistance, points 22
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.060
Boron (B), % 0
0.0020 to 0.0060
Carbon (C), % 0 to 0.050
0.060 to 0.1
Chromium (Cr), % 19 to 22
0 to 0.2
Copper (Cu), % 0 to 1.0
0 to 0.3
Iron (Fe), % 68 to 78.3
97.6 to 98.8
Manganese (Mn), % 0 to 2.5
0.6 to 0.8
Molybdenum (Mo), % 0.6 to 1.4
0.4 to 0.5
Nickel (Ni), % 2.0 to 4.0
0
Nitrogen (N), % 0.14 to 0.24
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 0.8
0.1 to 0.35
Sulfur (S), % 0 to 0.0050
0 to 0.010
Titanium (Ti), % 0
0 to 0.060