MakeItFrom.com
Menu (ESC)

WE43A Magnesium vs. 5086 Aluminum

WE43A magnesium belongs to the magnesium alloys classification, while 5086 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is WE43A magnesium and the bottom bar is 5086 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
68
Elongation at Break, % 5.2 to 5.4
1.7 to 20
Fatigue Strength, MPa 85 to 120
88 to 180
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 17
26
Shear Strength, MPa 160
160 to 230
Tensile Strength: Ultimate (UTS), MPa 250 to 270
270 to 390
Tensile Strength: Yield (Proof), MPa 160 to 170
110 to 320

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 570
590
Specific Heat Capacity, J/kg-K 960
900
Thermal Conductivity, W/m-K 51
130
Thermal Expansion, µm/m-K 27
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
31
Electrical Conductivity: Equal Weight (Specific), % IACS 55
100

Otherwise Unclassified Properties

Base Metal Price, % relative 34
9.5
Density, g/cm3 1.9
2.7
Embodied Carbon, kg CO2/kg material 28
8.8
Embodied Energy, MJ/kg 250
150
Embodied Water, L/kg 910
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
5.8 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 280 to 310
86 to 770
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 61
50
Strength to Weight: Axial, points 36 to 39
28 to 40
Strength to Weight: Bending, points 46 to 48
34 to 44
Thermal Diffusivity, mm2/s 28
52
Thermal Shock Resistance, points 15 to 16
12 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
93 to 96.3
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 0 to 0.030
0 to 0.1
Iron (Fe), % 0 to 0.010
0 to 0.5
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 89.5 to 93.5
3.5 to 4.5
Manganese (Mn), % 0 to 0.15
0.2 to 0.7
Nickel (Ni), % 0 to 0.0050
0
Silicon (Si), % 0 to 0.010
0 to 0.4
Titanium (Ti), % 0
0 to 0.15
Unspecified Rare Earths, % 2.4 to 4.4
0
Yttrium (Y), % 3.7 to 4.3
0
Zinc (Zn), % 0 to 0.2
0 to 0.25
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0 to 0.15