MakeItFrom.com
Menu (ESC)

WE43A Magnesium vs. 5154A Aluminum

WE43A magnesium belongs to the magnesium alloys classification, while 5154A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is WE43A magnesium and the bottom bar is 5154A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
68
Elongation at Break, % 5.2 to 5.4
1.1 to 19
Fatigue Strength, MPa 85 to 120
83 to 160
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 17
26
Shear Strength, MPa 160
140 to 210
Tensile Strength: Ultimate (UTS), MPa 250 to 270
230 to 370
Tensile Strength: Yield (Proof), MPa 160 to 170
96 to 320

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 570
600
Specific Heat Capacity, J/kg-K 960
900
Thermal Conductivity, W/m-K 51
130
Thermal Expansion, µm/m-K 27
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
32
Electrical Conductivity: Equal Weight (Specific), % IACS 55
110

Otherwise Unclassified Properties

Base Metal Price, % relative 34
9.5
Density, g/cm3 1.9
2.7
Embodied Carbon, kg CO2/kg material 28
8.8
Embodied Energy, MJ/kg 250
150
Embodied Water, L/kg 910
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
4.0 to 36
Resilience: Unit (Modulus of Resilience), kJ/m3 280 to 310
68 to 760
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 61
51
Strength to Weight: Axial, points 36 to 39
24 to 38
Strength to Weight: Bending, points 46 to 48
31 to 43
Thermal Diffusivity, mm2/s 28
53
Thermal Shock Resistance, points 15 to 16
10 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
93.7 to 96.9
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 0 to 0.030
0 to 0.1
Iron (Fe), % 0 to 0.010
0 to 0.5
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 89.5 to 93.5
3.1 to 3.9
Manganese (Mn), % 0 to 0.15
0 to 0.5
Nickel (Ni), % 0 to 0.0050
0
Silicon (Si), % 0 to 0.010
0 to 0.5
Titanium (Ti), % 0
0 to 0.2
Unspecified Rare Earths, % 2.4 to 4.4
0
Yttrium (Y), % 3.7 to 4.3
0
Zinc (Zn), % 0 to 0.2
0 to 0.2
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0 to 0.15