MakeItFrom.com
Menu (ESC)

WE43A Magnesium vs. 5457 Aluminum

WE43A magnesium belongs to the magnesium alloys classification, while 5457 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is WE43A magnesium and the bottom bar is 5457 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
68
Elongation at Break, % 5.2 to 5.4
6.0 to 22
Fatigue Strength, MPa 85 to 120
55 to 98
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 17
26
Shear Strength, MPa 160
85 to 130
Tensile Strength: Ultimate (UTS), MPa 250 to 270
130 to 210
Tensile Strength: Yield (Proof), MPa 160 to 170
50 to 190

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 640
660
Melting Onset (Solidus), °C 570
630
Specific Heat Capacity, J/kg-K 960
900
Thermal Conductivity, W/m-K 51
180
Thermal Expansion, µm/m-K 27
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
46
Electrical Conductivity: Equal Weight (Specific), % IACS 55
150

Otherwise Unclassified Properties

Base Metal Price, % relative 34
9.5
Density, g/cm3 1.9
2.7
Embodied Carbon, kg CO2/kg material 28
8.4
Embodied Energy, MJ/kg 250
160
Embodied Water, L/kg 910
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 280 to 310
18 to 250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 61
50
Strength to Weight: Axial, points 36 to 39
13 to 21
Strength to Weight: Bending, points 46 to 48
21 to 28
Thermal Diffusivity, mm2/s 28
72
Thermal Shock Resistance, points 15 to 16
5.7 to 9.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
97.8 to 99.05
Copper (Cu), % 0 to 0.030
0 to 0.2
Iron (Fe), % 0 to 0.010
0 to 0.1
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 89.5 to 93.5
0.8 to 1.2
Manganese (Mn), % 0 to 0.15
0.15 to 0.45
Nickel (Ni), % 0 to 0.0050
0
Silicon (Si), % 0 to 0.010
0 to 0.080
Unspecified Rare Earths, % 2.4 to 4.4
0
Vanadium (V), % 0
0 to 0.050
Yttrium (Y), % 3.7 to 4.3
0
Zinc (Zn), % 0 to 0.2
0 to 0.050
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0 to 0.1