MakeItFrom.com
Menu (ESC)

WE43A Magnesium vs. 6012 Aluminum

WE43A magnesium belongs to the magnesium alloys classification, while 6012 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is WE43A magnesium and the bottom bar is 6012 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
69
Elongation at Break, % 5.2 to 5.4
9.1 to 11
Fatigue Strength, MPa 85 to 120
55 to 100
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 17
26
Shear Strength, MPa 160
130 to 190
Tensile Strength: Ultimate (UTS), MPa 250 to 270
220 to 320
Tensile Strength: Yield (Proof), MPa 160 to 170
110 to 260

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 570
570
Specific Heat Capacity, J/kg-K 960
890
Thermal Conductivity, W/m-K 51
160
Thermal Expansion, µm/m-K 27
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
45
Electrical Conductivity: Equal Weight (Specific), % IACS 55
140

Otherwise Unclassified Properties

Base Metal Price, % relative 34
9.5
Density, g/cm3 1.9
2.9
Embodied Carbon, kg CO2/kg material 28
8.2
Embodied Energy, MJ/kg 250
150
Embodied Water, L/kg 910
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
21 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 280 to 310
94 to 480
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 61
48
Strength to Weight: Axial, points 36 to 39
22 to 32
Strength to Weight: Bending, points 46 to 48
29 to 37
Thermal Diffusivity, mm2/s 28
62
Thermal Shock Resistance, points 15 to 16
10 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
92.2 to 98
Bismuth (Bi), % 0
0 to 0.7
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 0.030
0 to 0.1
Iron (Fe), % 0 to 0.010
0 to 0.5
Lead (Pb), % 0
0.4 to 2.0
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 89.5 to 93.5
0.6 to 1.2
Manganese (Mn), % 0 to 0.15
0.4 to 1.0
Nickel (Ni), % 0 to 0.0050
0
Silicon (Si), % 0 to 0.010
0.6 to 1.4
Titanium (Ti), % 0
0 to 0.2
Unspecified Rare Earths, % 2.4 to 4.4
0
Yttrium (Y), % 3.7 to 4.3
0
Zinc (Zn), % 0 to 0.2
0 to 0.3
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0 to 0.15

Comparable Variants