MakeItFrom.com
Menu (ESC)

WE43A Magnesium vs. 6060 Aluminum

WE43A magnesium belongs to the magnesium alloys classification, while 6060 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is WE43A magnesium and the bottom bar is 6060 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
68
Elongation at Break, % 5.2 to 5.4
9.0 to 16
Fatigue Strength, MPa 85 to 120
37 to 70
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 17
26
Shear Strength, MPa 160
86 to 130
Tensile Strength: Ultimate (UTS), MPa 250 to 270
140 to 220
Tensile Strength: Yield (Proof), MPa 160 to 170
71 to 170

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 180
160
Melting Completion (Liquidus), °C 640
660
Melting Onset (Solidus), °C 570
610
Specific Heat Capacity, J/kg-K 960
900
Thermal Conductivity, W/m-K 51
210
Thermal Expansion, µm/m-K 27
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
54
Electrical Conductivity: Equal Weight (Specific), % IACS 55
180

Otherwise Unclassified Properties

Base Metal Price, % relative 34
9.5
Density, g/cm3 1.9
2.7
Embodied Carbon, kg CO2/kg material 28
8.3
Embodied Energy, MJ/kg 250
150
Embodied Water, L/kg 910
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
13 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 280 to 310
37 to 210
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 61
50
Strength to Weight: Axial, points 36 to 39
14 to 23
Strength to Weight: Bending, points 46 to 48
22 to 30
Thermal Diffusivity, mm2/s 28
85
Thermal Shock Resistance, points 15 to 16
6.3 to 9.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
97.9 to 99.3
Chromium (Cr), % 0
0 to 0.050
Copper (Cu), % 0 to 0.030
0 to 0.1
Iron (Fe), % 0 to 0.010
0.1 to 0.3
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 89.5 to 93.5
0.35 to 0.6
Manganese (Mn), % 0 to 0.15
0 to 0.1
Nickel (Ni), % 0 to 0.0050
0
Silicon (Si), % 0 to 0.010
0.3 to 0.6
Titanium (Ti), % 0
0 to 0.1
Unspecified Rare Earths, % 2.4 to 4.4
0
Yttrium (Y), % 3.7 to 4.3
0
Zinc (Zn), % 0 to 0.2
0 to 0.15
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0 to 0.15

Comparable Variants