MakeItFrom.com
Menu (ESC)

WE43A Magnesium vs. 7204 Aluminum

WE43A magnesium belongs to the magnesium alloys classification, while 7204 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is WE43A magnesium and the bottom bar is 7204 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
70
Elongation at Break, % 5.2 to 5.4
11 to 13
Fatigue Strength, MPa 85 to 120
110 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 17
26
Shear Strength, MPa 160
130 to 220
Tensile Strength: Ultimate (UTS), MPa 250 to 270
220 to 380
Tensile Strength: Yield (Proof), MPa 160 to 170
120 to 310

Thermal Properties

Latent Heat of Fusion, J/g 330
380
Maximum Temperature: Mechanical, °C 180
210
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 570
520
Specific Heat Capacity, J/kg-K 960
880
Thermal Conductivity, W/m-K 51
150
Thermal Expansion, µm/m-K 27
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
39
Electrical Conductivity: Equal Weight (Specific), % IACS 55
120

Otherwise Unclassified Properties

Base Metal Price, % relative 34
9.5
Density, g/cm3 1.9
2.9
Embodied Carbon, kg CO2/kg material 28
8.4
Embodied Energy, MJ/kg 250
150
Embodied Water, L/kg 910
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
25 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 280 to 310
110 to 710
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 61
47
Strength to Weight: Axial, points 36 to 39
21 to 36
Strength to Weight: Bending, points 46 to 48
28 to 40
Thermal Diffusivity, mm2/s 28
58
Thermal Shock Resistance, points 15 to 16
9.4 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
90.5 to 94.8
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 0.030
0 to 0.2
Iron (Fe), % 0 to 0.010
0 to 0.35
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 89.5 to 93.5
1.0 to 2.0
Manganese (Mn), % 0 to 0.15
0.2 to 0.7
Nickel (Ni), % 0 to 0.0050
0
Silicon (Si), % 0 to 0.010
0 to 0.3
Titanium (Ti), % 0
0 to 0.2
Unspecified Rare Earths, % 2.4 to 4.4
0
Vanadium (V), % 0
0 to 0.1
Yttrium (Y), % 3.7 to 4.3
0
Zinc (Zn), % 0 to 0.2
4.0 to 5.0
Zirconium (Zr), % 0.4 to 1.0
0 to 0.25
Residuals, % 0 to 0.3
0 to 0.15

Comparable Variants