MakeItFrom.com
Menu (ESC)

WE43A Magnesium vs. C96700 Copper

WE43A magnesium belongs to the magnesium alloys classification, while C96700 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE43A magnesium and the bottom bar is C96700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
140
Elongation at Break, % 5.2 to 5.4
10
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 17
53
Tensile Strength: Ultimate (UTS), MPa 250 to 270
1210
Tensile Strength: Yield (Proof), MPa 160 to 170
550

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 180
310
Melting Completion (Liquidus), °C 640
1170
Melting Onset (Solidus), °C 570
1110
Specific Heat Capacity, J/kg-K 960
400
Thermal Conductivity, W/m-K 51
30
Thermal Expansion, µm/m-K 27
15

Otherwise Unclassified Properties

Base Metal Price, % relative 34
90
Density, g/cm3 1.9
8.8
Embodied Carbon, kg CO2/kg material 28
9.5
Embodied Energy, MJ/kg 250
140
Embodied Water, L/kg 910
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
99
Resilience: Unit (Modulus of Resilience), kJ/m3 280 to 310
1080
Stiffness to Weight: Axial, points 13
8.9
Stiffness to Weight: Bending, points 61
20
Strength to Weight: Axial, points 36 to 39
38
Strength to Weight: Bending, points 46 to 48
29
Thermal Diffusivity, mm2/s 28
8.5
Thermal Shock Resistance, points 15 to 16
40

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 0
1.1 to 1.2
Copper (Cu), % 0 to 0.030
62.4 to 68.8
Iron (Fe), % 0 to 0.010
0.4 to 1.0
Lead (Pb), % 0
0 to 0.010
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 89.5 to 93.5
0
Manganese (Mn), % 0 to 0.15
0.4 to 1.0
Nickel (Ni), % 0 to 0.0050
29 to 33
Silicon (Si), % 0 to 0.010
0 to 0.15
Titanium (Ti), % 0
0.15 to 0.35
Unspecified Rare Earths, % 2.4 to 4.4
0
Yttrium (Y), % 3.7 to 4.3
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0.15 to 0.35
Residuals, % 0 to 0.3
0 to 0.5