MakeItFrom.com
Menu (ESC)

WE43A Magnesium vs. N08535 Stainless Steel

WE43A magnesium belongs to the magnesium alloys classification, while N08535 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE43A magnesium and the bottom bar is N08535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
200
Elongation at Break, % 5.2 to 5.4
46
Fatigue Strength, MPa 85 to 120
220
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
80
Shear Strength, MPa 160
400
Tensile Strength: Ultimate (UTS), MPa 250 to 270
570
Tensile Strength: Yield (Proof), MPa 160 to 170
240

Thermal Properties

Latent Heat of Fusion, J/g 330
310
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 570
1370
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 51
13
Thermal Expansion, µm/m-K 27
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 55
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 34
36
Density, g/cm3 1.9
8.1
Embodied Carbon, kg CO2/kg material 28
6.3
Embodied Energy, MJ/kg 250
87
Embodied Water, L/kg 910
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
210
Resilience: Unit (Modulus of Resilience), kJ/m3 280 to 310
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 61
24
Strength to Weight: Axial, points 36 to 39
20
Strength to Weight: Bending, points 46 to 48
19
Thermal Diffusivity, mm2/s 28
3.3
Thermal Shock Resistance, points 15 to 16
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 27
Copper (Cu), % 0 to 0.030
0 to 1.5
Iron (Fe), % 0 to 0.010
29.4 to 44.5
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 89.5 to 93.5
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0 to 0.0050
29 to 36.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.010
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Unspecified Rare Earths, % 2.4 to 4.4
0
Yttrium (Y), % 3.7 to 4.3
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0