MakeItFrom.com
Menu (ESC)

WE43A Magnesium vs. S31277 Stainless Steel

WE43A magnesium belongs to the magnesium alloys classification, while S31277 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE43A magnesium and the bottom bar is S31277 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
210
Elongation at Break, % 5.2 to 5.4
45
Fatigue Strength, MPa 85 to 120
380
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
80
Shear Strength, MPa 160
600
Tensile Strength: Ultimate (UTS), MPa 250 to 270
860
Tensile Strength: Yield (Proof), MPa 160 to 170
410

Thermal Properties

Latent Heat of Fusion, J/g 330
310
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 960
460
Thermal Expansion, µm/m-K 27
16

Otherwise Unclassified Properties

Base Metal Price, % relative 34
36
Density, g/cm3 1.9
8.1
Embodied Carbon, kg CO2/kg material 28
6.7
Embodied Energy, MJ/kg 250
90
Embodied Water, L/kg 910
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
320
Resilience: Unit (Modulus of Resilience), kJ/m3 280 to 310
410
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 61
24
Strength to Weight: Axial, points 36 to 39
29
Strength to Weight: Bending, points 46 to 48
25
Thermal Shock Resistance, points 15 to 16
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
20.5 to 23
Copper (Cu), % 0 to 0.030
0.5 to 1.5
Iron (Fe), % 0 to 0.010
35.5 to 46.2
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 89.5 to 93.5
0
Manganese (Mn), % 0 to 0.15
0 to 3.0
Molybdenum (Mo), % 0
6.5 to 8.0
Nickel (Ni), % 0 to 0.0050
26 to 28
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.010
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Unspecified Rare Earths, % 2.4 to 4.4
0
Yttrium (Y), % 3.7 to 4.3
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0